Home
Class 12
MATHS
If f(x)=(-1)^([2x/pi]),g(x)=|sinx|-|cosx...

If `f(x)=(-1)^([2x/pi]),g(x)=|sinx|-|cosx|,a n dvarphi(x)=f(x)g(x)` (where [.] denotes the greatest integer function), then the respective fundamental periods of `f(x),g(x),a n dvarphi(x)` are a) `pi,pi,pi` (b) `pi,2pi,pi` c) `pi,pi,pi/2` (d) `pi,pi/2,pi`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that int_(-pi/2)^(2pi)[cot^(-1)x]dx ,where [dot] denotes the greatest integer function.

The value of int_(e)^(pi^(2))[log_(pi)x]d(log_(e)x) (where [.] denotes greatest integer function) is

The function f(x)=(tan |pi[x-pi]|)/(1+[x]^(2)) , where [x] denotes the greatest integer less than or equal to x, is

The right hand derivative of f(x)=[x]t a npix at x=7 is (where [.] denotes the greatest integer function) a. 0 b. 7pi c. -7pi d. none of these

Range of tan^(-1)((2x)/(1+x^2)) is (a) [-pi/4,pi/4] (b) (-pi/2,pi/2) (c) (-pi/2,pi/4) (d) [pi/4,pi/2]

If f(x)=cos[pi^2]x +cos[-pi^2]x , where [x] stands for the greatest integer function, then (a) f(pi/2)=-1 (b) f(pi)=1 (c) f(-pi)=0 (d) f(pi/4)=1

The function f(x)=tan^(-1)(sinx+cosx) is an increasing function in (-pi/2,pi/4) (b) (0,pi/2) (-pi/2,pi/2) (d) (pi/4,pi/2)

The range of sin^(-1)[x^2+1/2]+cos^(-1)[x^2-1/2] , where [.] denotes the greatest integer function, is {pi/2,pi} (b) {pi} (c) {pi/2} (d) none of these

The sum of roots of the equation cos^(-1)(cosx)=[x],[dot] denotes the greatest integer function, is (a) 2pi+3 (b) pi+3 (c) pi-3 (d) 2 pi-3

Find whether the given function is even or odd: f(x)=x(sinx+tanx)/([(x+pi)/pi]-1/2); where [] denotes the greatest integer function.