Home
Class 12
MATHS
Let f(x)=x^2a n dg(x)=sinxfora l lx in ...

Let `f(x)=x^2a n dg(x)=sinxfora l lx in Rdot` Then the set of all `x` satisfying `(fogogof)(x)=(gogof)(x),w h e r e(fog)(x)=f(g(x)),` is `+-sqrt(npi),n in {0,1,2, dot}` `+-sqrt(npi),n in {1,2, dot}` `pi/2+2npi,n in { ,-2,-1,0,1,2}` `2npi,n in { ,-2,-1,0,1,2, }`

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=(x+1)/(x-1)a n dg(x)=1/(x-2),t h e n discuss the continuity of f(x),g(x),a n dfog(x)dot

If f(x)={x^2, for xgeq1x ,for x<0 ,t h e n fof(x) is given by

Let f(x)=x^2-2x ,x in R ,a n dg(x)=f(f(x)-1)+f(5-f(x))dot Show that g(x)geq0AAx in Rdot

Let the function f(x)=x^2+x+s in x-cosx+log(1+|x|) be defined on the interval [0,1] .Define functions g(x)a n dh(x)in[-1,0] satisfying g(-x)=-f(x)a n dh(-x)=f(x)AAx in [0,1]dot

Let g(x)=2f(x/2)+f(2-x)a n df^('')(x)<0AAx in (0,2)dot Then g(x) increases in (a) (1/2,2) (b) (4/3,2) (c) (0,2) (d) (0,4/3)

Let f(x)a n dg(x) be two differentiable functions in Ra n df(2)=8,g(2)=0,f(4)=10 ,a n dg(4)=8. Then prove that g^(prime)(x)=4f^(prime)(x) for at least one x in (2,4)dot

Let f(x)=int x^2/((1+x^2)(1+sqrt(1+x^2)))dx and f(0)=0 then f(1) is

The solutions of the equation 1+(sinx-cosx)sinpi/4=2cos^2(5x)/2 is/are x=(npi)/3+pi/8, n in Z x=(npi)/2+(5pi)/(16), n in Z x=(npi)/3+pi/4, n in Z x=(npi)/2+(7pi)/8, n in Z

Let f((x+y)/2)=(f(x)+f(y))/2fora l lr e a lxa n dy If f^(prime)(0) exists and equals -1a n df(0)=1,t h e n f i n d f(2)dot

Which of the following set of values of x satisfies the equation 2^(2sin^2x-3sinx+1)+2^(2-2sin^2x+3sinx)=9? (a) x=npi+-pi/6,n in I (b) x=npi+-pi/3, n in I (c) x=npi,n in I (d) x=2npi+pi/2,n in I