Home
Class 12
MATHS
Find the domain and range of f(x)=sin^(-...

Find the domain and range of `f(x)=sin^(-1)[x]w h e r[]` represents the greatest function).

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the domain and range of f(x)=sqrt(4-16x^(2)) .

Find the domain and range of f(x)=log{x},w h e r e{} represents the fractional part function).

Find the range of f(x)=(x-[x])/(1-[x]+x '),w h e r e[] represents the greatest integer function.

Find the domain of f(x)=sin^(-1)((x^2)/2)dot

Find the domain of f(x)=sqrt(([x]-1))+sqrt((4-[x])) (where [ ] represents the greatest integer function).

If the domain of y=f(x)i s[-3,2], then find the domain of g(x)=f(|[x]|),w h e re[] denotes the greatest integer function.

Find the domain of the function: f(x)=(sin^(-1)x)/x

Draw a graph of f(x) = sin {x} , where {x} represents the greatest integer function.

Domain (D) and range (R) of f(x)=sin^(-1)(cos^(-1)[x]), where [.] denotes the greatest integer function, is

Domain (D) and range (R) of f(x)=sin^(-1)(cos^(-1)[x]), where [.] denotes the greatest integer function, is D-=x in [1,2],R in {0} D -=x in 90 ,1],R-={-1,0,1} -=x in [-1,1],R-={0,sin^(-1)(pi/2),sin^(-1)(pi)} -=x in [-1,1],R-={-pi/2,0,pi/2}