Home
Class 12
MATHS
Solve x^2-4-[x]=0 (where [] denotes the ...

Solve `x^2-4-[x]=0` (where `[]` denotes the greatest integer function).

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve : 4{x}= x+ [x] (where [*] denotes the greatest integer function and {*} denotes the fractional part function.

lim_(xrarr0) [(sin^(-1)x)/(tan^(-1)x)]= (where [.] denotes the greatest integer function)

If f(x)={x+1/2, x<0 2x+3/4,x >=0 , then [(lim)_(x->0)f(x)]= (where [.] denotes the greatest integer function)

Solve 2[x]=x+{x},w h r e[]a n d{} denote the greatest integer function and the fractional part function, respectively.

(lim)_(xvec(-1^)/3)1/x[(-1)/x]= (where [.] denotes the greatest integer function) a. -9 b. -12 c. -6 d. 0

Prove that int_0^x[t]dt=([x]([x]-1))/2+[x](x-[x]), where [.] denotes the greatest integer function.

Evaluate int_(2)^(5) (x-[x])dx , where [.] denotes the greatest integer function.

Evaluate int_(0)^(3) [x]dx ,where [.] denotes the greatest integer function.

Evaluate int_(-1)^(1) (x-[x])dx , where [.] denotes the greatest integer function.

Area bounded by the curve [|x|] + [|y|] = 3, where [.] denotes the greatest integer function