Home
Class 12
MATHS
Let f(x)=e^(e^(|x|sgnx))a n dg(x)=e^(e^(...

Let `f(x)=e^(e^(|x|sgnx))a n dg(x)=e^(e^(|x|sgnx)),x in R ,` where { } and [ ] denote the fractional and integral part functions, respectively. Also, `h(x)=log(f(x))+log(g(x))dot` Then for real `x , h(x)` is (a)an odd function (b)an even function (c)neither an odd nor an even function (d)both odd and even function

Promotional Banner

Similar Questions

Explore conceptually related problems

Integrate the function x e^(-x)

Integrate the functions e^(x)sinx

Solve 2[x]=x+{x},w h r e[]a n d{} denote the greatest integer function and the fractional part function, respectively.

Integrate the functions x^(2)e^(X)

Integrate the following functions with respect to x . e^(xloga) e^x

The function f(x)=sin(log(x+sqrt(1+x^2))) is (a) even function (b) odd function (c) neither even nor odd (d) periodic function

If f(x) be an even function. Then f'(x)