Home
Class 12
MATHS
Find the domain of f(x)=1/(sqrt(x+|x|))...

Find the domain of `f(x)=1/(sqrt(x+|x|))`

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the domain of f(x)=1/(sqrt(x-[x])) (b) f(x)=1/(log[x]) f(x)=log{x}

Find the domain of f(x)=1/(sqrt(|[|x|-1]|-5))

Solve sinx >-1/2or find the domain of f(x)=1/(sqrt(1+2sinx))

Find the domain of f(x) = sqrt (|x|-{x}) (where {*} denots the fractional part of x).

find the domain of f(x)=sqrt((1-|x|)/(2-|x|))

Find the domain of f(x)=sqrt(([x]-1))+sqrt((4-[x])) (where [ ] represents the greatest integer function).

Find the domain of f(x)(sqrt((1-sinx)))/((log)_5(1-4x^2) +cos^(-1)(1-{x})dot

Find the domain of f(x)=(1)/(1-2sinx)

Find the domain of f(x)=sqrt(((1-5^x)/(7^(-x)-7)))