Home
Class 12
MATHS
The domain of the function f(x)=sqrt(log...

The domain of the function `f(x)=sqrt(log(1/(|sinx|)))` (a)`R-{-pi,pi}` (b) `R-{npi|npiZ}` (c)`R-{2npi|n in z}` (d) `(-oo,oo)`

Promotional Banner

Similar Questions

Explore conceptually related problems

The domain of the function f(x)=sqrt(log_((|x|-1))(x^2+4x+4)) is (a) (-3,-1)uu(1,2) (b) (-2,-1)uu(2,oo) (c) (-oo,-3)uu(-2,-1)uu(2,oo) (d)none of these

Let x in (0,pi/2)dot Then find the domain of the function f(x)=1/sqrt((-(log)_(sinx)tanx))

The domain of the function f(x)=1/(sqrt(|x|-x)) is: (1) (-oo,oo) (2) (0,oo (3) (-oo,""0) (4) (-oo,oo)"-"{0}

The domain of the function f(x)=(log)_e{(log)_(|sinx|)(x^2-8x+23)-{3/((log)_2|sinx|)}} contains which of the following interval(s)? (a) (3,pi) (b) (pi,(3pi)/2) (c) ((3pi)/2,5) (d) none of these

The domain of the function f(x)=x/(sqrt(sin(lnx)-cos(lnx))),(n in Z) is (a) (e^(2npi),e^((3n+1/2)pi)) (b) (e^((2n+1/4)pi),e^((2n+5/4)pi)) (e^((2n+1/4)pi),e^((2n-3/4)pi)) (d) none of these

The domain of the following function is f(x)=(log)_2(-(log)_(1/2)(1+1/((x^(1/4)))-1) (a) (0,1) (b) (1,0) (1,oo) (d) (1,oo)

The exhaustive domain of the following function is f(x)=sqrt(x^(12)-x^9+x^4-x+1) (a) [0,1] (b) [1,oo] [-oo,1] (d) R

The domain of the function f(x)=1/(sqrt({sinx}+{sin(pi+x)})) where {dot} denotes the fractional part, is (a) [0,pi] (b) (2n+1)pi/2, n in Z (c) (0,pi) (d) none of these

Which of the following is not the general solution of 2^(cos2x)+1=3. 2^-sin^(2x)? (a) npi,n in Z (b) (n+1/2)pi,n in Z (n-1/2)pi,n in Z (d) none of these

The domain of f(x)=((log)_2(x+3))/(x^2+3x+2) is (a) R-{-1,2} (b) (-2,oo) (c) R-{-1,-2,-3} (d) (-3,oo)-(-1,-2}