Home
Class 12
MATHS
Let f:(-1,1)rarrB be a function defined...

Let `f:(-1,1)rarrB` be a function defined by `f(x)=tan^(-1)[(2x)/(1-x^2)]` . Then `f` is both one-one and onto when `B` is the interval. (a)`[0,pi/2)` (b) `(0,pi/2)` (c)`(-pi/2,pi/2)` (d) `[-pi/2,pi/2]`

Promotional Banner

Similar Questions

Explore conceptually related problems

One of the root equation cosx-x+1/2=0 lies in the interval (a) (0,pi/2) (b) (-pi/(2,0)) (c) (pi/2,pi) (d) (pi,(3pi)/2)

Range of tan^(-1)((2x)/(1+x^2)) is (a) [-pi/4,pi/4] (b) (-pi/2,pi/2) (c) (-pi/2,pi/4) (d) [pi/4,pi/2]

The function f : [0,2 pi] to 1 [-1,1] defined by f(x) = sin x is

The range of f(x)=sin^(-1)(sqrt(x^2+x+1))i s (0,pi/2) (b) (0,pi/3) (c) [pi/3,pi/2] (d) [pi/6,pi/3]

The equation (cosp-1)x^2+(cos p)x+sin p=0 in the variable x has real roots. The p can take any value in the interval (a) (0,2pi) (b) (-pi,0) (c) (-pi/2,pi/2) (d) (0,pi)

Let f:(-pi/2,pi/2)-> RR be given by f(x) = (log(sec x + tan x))^3 Then which of the following is wrong?

Let 2sin^2x+3sinx-2>0 andx^2-x-2<0(x is measured in radians). Then x lies in the interval (a) (pi/6,(5pi)/6) (b) (-1,(5pi)/6) (c) (-1,2) (d) (pi/6,2)

Number of integers in the range of f(x)=1/pi(sin^(-1)x+tan^(-1)x)+(x+1)/(x^2+2x+5) is 0 b. 3 c. 2 d. 1