Home
Class 12
MATHS
Given the function f(x)=(a^x+a^(-x))/2(w...

Given the function `f(x)=(a^x+a^(-x))/2(w h e r ea >2)dotT h e nf(x+y)+f(x-y)=` (A) `2f(x).f(y)` (B) `f(x).f(y)` (C) `f(x)/f(y)` (D) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=|x-1|dot Then (a) f(x^2)=(f(x))^2 (b) f(x+y)=f(x)+f(y) (c) f(|x|)-|f(x)| (d) none of these

If f(x)=lim_(n->oo)n(x^(1/n)-1),t h e nforx >0,y >0,f(x y) is equal to : (a) f(x)f(y) (b) f(x)+f(y) (c) f(x)-f(y) (d) none of these

A function f: RvecR satisfies the equation f(x)f(y)-f(x y)=x+yAAx ,y in Ra n df(1)>0 , then f(x)f^(-1)(x)=x^2-4 b. f(x)f^(-1)(x)=x^2-6 c. f(x)f^(-1)(x)=x^2-1 d. none of these

Off(x)=int_0^x("cos"(sint)+"cos"(cost)dt ,t h e nf(x+pi)i s (a) f(x)+f(pi) (b) f(x)+2(pi) (c) f(x)+f(pi/2) (d) f(x)+2f(pi/2)

If f(x)=int_0^x("cos"(sint)+"cos"(cost)dt ,t h e nf(x+pi)i s f(x)+f(pi) (b) f(x)+2(pi) f(x)+f(pi/2) (d) f(x)+2f(pi/2)

For each of the functions find the f _(x), f _(y), and show that f _(xy) = f _(yx). f (x,y) = tan ^(-1)"" ((x)/(y))

Which of the following functions have the graph symmetrical about the origin? (a) f(x) given by f(x)+f(y)=f((x+y)/(1-x y)) (b) f(x) given by f(x)+f(y)=f(xsqrt(1-y^2)+ysqrt(1-x^2)) (c) f(x) given by f(x+y)=f(x)+f(y)AAx , y in R (d) none of these

If f (x) = cos ( log _e x ) then f(x) . f(y) - (1)/(2) [f(y/x ) + f (xy)] has the value

If f (x/y)= f(x)/f(y) , AA y, f (y)!=0 and f' (1) = 2 , find f(x) .

For each of the functions find the f _(x), f _(y), and show that f _(xy) = f _(yx). f (x,y) = (3x)/( y + sin x)