Home
Class 12
MATHS
The domain of f(x)="log"|logx|i s (a)(0...

The domain of `f(x)="log"|logx|i s` (a)`(0,oo)` (b) `(1,oo)` (c) `(0,1)uu(1,oo)` (d) `(-oo,1)`

Promotional Banner

Similar Questions

Explore conceptually related problems

The domain of the function f(x)=sqrt(log_((|x|-1))(x^2+4x+4)) is (a) (-3,-1)uu(1,2) (b) (-2,-1)uu(2,oo) (c) (-oo,-3)uu(-2,-1)uu(2,oo) (d)none of these

The domain of the function f(x)=1/(sqrt(|x|-x)) is: (1) (-oo,oo) (2) (0,oo (3) (-oo,""0) (4) (-oo,oo)"-"{0}

The domain of f(x)=((log)_2(x+3))/(x^2+3x+2) is (a) R-{-1,2} (b) (-2,oo) (c) R-{-1,-2,-3} (d) (-3,oo)-(-1,-2}

The domain of the function f(x)=(sin^(-1)(3-x))/(I n(|x|-2))i s [2,4] (b) (2,3)uu(3,4] (c) (0,1)uu(1,oo) (d) (-oo,-3)uu(2,oo)

f(x)=|x log_e x| monotonically decreases in (a) (0,1/e) (b) (1/e ,1) (c) (1,oo) (d) (1/e ,oo)

Given that f'(x) > g'(x) for all real x, and f(0)=g(0) . Then f(x) < g(x) for all x belong to (a) (0,oo) (b) (-oo,0) (c) (-oo,oo) (d) none of these

The range of values of alpha for which the line 2y=gx+alpha is a normal to the circle x^2=y^2+2gx+2gy-2=0 for all values of g is (a) [1,oo) (b) [-1,oo) (c) (0,1) (d) (-oo,1]

The domain of the following function is f(x)=(log)_2(-(log)_(1/2)(1+1/((x^(1/4)))-1) (a) (0,1) (b) (1,0) (1,oo) (d) (1,oo)

If (log)_3(x^2-6x+11)lt=1, then the exhaustive range of values of x is: (a) (-oo,2)uu(4,oo) (b) [2,4] (c) (-oo,1)uu(1,3)uu(4,oo) (d) none of these

f(x)=(x-2)|x-3| is monotonically increasing in (a) (-oo,5/2)uu(3,oo) (b) (5/2,oo) (c) (2,oo) (d) (-oo,3)