Home
Class 12
MATHS
Let f: Xrarryf(x)=s inx+cosx+2sqrt(2) b...

Let `f: Xrarryf(x)=s inx+cosx+2sqrt(2)` be invertible. Then which `XrarrY` is not possible? `[pi/4,(5pi)/4]rarr[sqrt(2,)3sqrt(2)]` `[-(3pi)/4,pi/4]rarr[sqrt(2,)3sqrt(2)]` `[-(3pi)/4,(3pi)/4]rarr[sqrt(2,)3sqrt(2)]` none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of the definite integral int_0^(pi/2)sqrt(tanx)dx is sqrt(2)pi (b) pi/(sqrt(2)) 2sqrt(2)pi (d) pi/(2sqrt(2))

The value of the definite integral int_0^(pi/2)sqrt(tanx)dx is sqrt(2)pi (b) pi/(sqrt(2)) 2sqrt(2)pi (d) pi/(2sqrt(2))

The solution for x of the equation int_(sqrt(2))^x(dt)/(tsqrt(t^2-1))=pi/2 is pi (b) (sqrt(3))/2 (c) 2sqrt(2) (d) none of these

The value 4^(5log_(4sqrt(2))(3-sqrt(6))-6log_8(sqrt(3)-sqrt(2))) is

The value of ("lim")_(xto2)(sqrt(1+sqrt(2+x))-sqrt(3))/(x-2)i s (a) 1/(8sqrt(3)) (b) 1/(4sqrt(3)) (c) 0 (d) none of these

Prove that cos ((3pi)/(4)+x)-cos ((3pi)/(4)-x)=-sqrt2 sin x

The value of lim_(x->pi/4) (sqrt(1-sqrt(sin2x)))/(pi-4x) is

The value of lim_(x->pi/4) (sqrt(1-sqrt(sin2x)))/(pi-4x) is