Home
Class 12
MATHS
Consider the function f(x)={{:(x-[x]-(1)...

Consider the function `f(x)={{:(x-[x]-(1)/(2),x !in),(0, "x inI):}` where [.] denotes the fractional integral function and I is the set of integers. Then find `g(x)max.[x^(2),f(x),|x|},-2lexle2.`

Promotional Banner

Similar Questions

Explore conceptually related problems

Consider the function f(x)={2x+3,xlt=1 -x^2+6,x >1

if f(x) ={{:((1-|x|)/(1+x),xne-1),(1, x=-1):} then f([2x]) , where [.] represents the greatest integer function , is

Draw the graph of f(x) = [x^(2)], x in [0, 2) , where [*] denotes the greatest integer function.

Consider the real function f(x) =1 -2x find x if f(x) =-1

Evaluate int_(0)^(1.5) x[x^2] dx , where [.] denotes the greatest integer function

The period of the function f(x) = a^({ tan ( pi x) } +x -[x] ) , where a gt 0 , [x] denotes the greatest integer function and x is real number, is

Let f(x)=sec^(-1)[1+cos^(2)x], where [.] denotes the greatest integer function. Then the range of f(x) is

Consider the real function f(x) =1 -2x find f(-1) and f(2)

Prove that int_0^x[t]dt=([x]([x]-1))/2+[x](x-[x]), where [.] denotes the greatest integer function.

The function f(x)=(tan |pi[x-pi]|)/(1+[x]^(2)) , where [x] denotes the greatest integer less than or equal to x, is