Home
Class 12
MATHS
Let f:[-1, 10]vecR ,w h e r ef(x)=sinx+[...

Let `f:[-1, 10]vecR ,w h e r ef(x)=sinx+[(x^2)/a],` be an odd function. Then the set of values of parameter `a` is/are `(-10 ,10)~{0}` (b) `(0, 10)` (c)`(100 ,oo)` (d) `(-100 ,oo)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f: R ->[0,pi/2) be defined by f(x)=tan^(-1)(x^2+x+a)dot Then the set of values of a for which f is onto is (a) (0,oo) (b) [2,1] (c) [1/4,oo] (d) none of these

If cos^2x-(c-1)cosx+2cgeq6 for every x in R , then the true set of values of c is (2,oo) (b) (4,oo) (c) (-oo,-2) (d) (-oo,-4)

If f(x)=(t+3x-x^2)/(x-4), where t is a parameter that has minimum and maximum, then the range of values of t is (0,4) (b) (0,oo) (-oo,4) (d) (4,oo)

f(x)=|x log_e x| monotonically decreases in (a) (0,1/e) (b) (1/e ,1) (c) (1,oo) (d) (1/e ,oo)

If f(x)=x^2+x+3/4 and g(x)=x^2+a x+1 be two real functions, then the range of a for which g(f(x))=0 has no real solution is (A) (-oo,-2) (B) (-2,2) (C) (-2,oo) (D) (2,oo)

Let f:[-oo,0]->[1,oo) be defined as f(x) = (1+sqrt(-x))-(sqrt(-x) -x) , then

The domain of f(x)="log"|logx|i s (a) (0,oo) (b) (1,oo) (c) (0,1)uu(1,oo) (d) (-oo,1)

Let f(x)=inte^x(x-1)(x-2)dxdot Then f decreases in the interval (a) (-oo,-2) (b) -2,-1) (c) (1,2) (d) (2,+oo)

The values of a for which the integral int_0^2|x-a|dxgeq1 is satisfied are (a) (2,oo) (b) (-oo,0) (c) (0,2) (d) none of these

Let f(x) be an increasing function defined on (0,oo) . If f(2a^2+a+1)>f(3a^2-4a+1), then the possible integers in the range of a is/are 1 (b) 2 (c) 3 (d) 4