Home
Class 12
MATHS
Suppose f(x)=(x+1)^2 forxgeq-1. If g(x) ...

Suppose `f(x)=(x+1)^2` for`xgeq-1.` If `g(x)` is the function whose graph is the reflection of the graph of `f(x)` with respect to the line `y=x ,` then `g(x)` equal. (a)`1-sqrt(x-1),xgeq0` (b) `1/((x+1)^2),x gt-1` (c)`sqrt(x+1,)xgeq-1` (d) `sqrt(x)-1,xgeq0`

A

`1-sqrt(x)-1, x ge 0`

B

`(1)/((x+1)^(2)),x gt -1 `

C

`sqrt(x+1), x ge -1`

D

`sqrt(x)-1, x ge 0`

Text Solution

Verified by Experts

Given that `f(x)=(x+1)^(2), x ge -1.`
Now, if g(x) is the reflection of f(x) in the line y = x, then g(x) is an inverse function of `y = f(x).`
Given `y=(x+1)^(2) (x ge -1 and y ge 0)`
` or x = +- sqrt(y)-1`
` or g(x) =f^(-1)(x)=sqrt(x)-1, x ge 0`
Promotional Banner

Similar Questions

Explore conceptually related problems

Draw the graph of y=sqrt(x)/(x-1)

If f(x)={x^2, for xgeq1x ,for x<0 ,t h e n fof(x) is given by

Draw and discuss the graph of f(x) = x+sqrt(x-1)

Draw the graph of f(x) = sqrt(1-e^(-x^(2))

Let f(x)={1+|x|,x<-1[x],xgeq-1 , where [.] denotes the greatest integer function. The find the value of f{f(-2.3)}dot

Show that 1+x ln (x+sqrt(x^2+1))geqsqrt(1+x^2) for all xgeq0.

Draw the graph of the functions f (x) = |x|, f(x) = |x-1| and f(x) = (x-1)^2

Let y=sqrt(x+sqrt(x+sqrt(x+oo))) , (dy)/(dx) is equal to (a) 1/(2y-1) (b) x/(x+2y) (c) 1/(sqrt(1+4x) (d) y/(2x+y)

Draw the graph of y=sqrt((1-x)/(1+x)) .

Discuss the continuity of the function ([.] represents the greatest integer function): f(x)=[2/(1+x^2)],xgeq0