Home
Class 12
MATHS
Let f(x)=(alphax)/((x+1)),x!=-1. The fo...

Let `f(x)=(alphax)/((x+1)),x!=-1.` The for what value of `alpha` is `f(f(x))=x ` (a)`sqrt(2)` (b) `-sqrt(2)` (c) `1` (d) `-1`

A

`sqrt(2)`

B

`-sqrt(2)`

C

1

D

-1

Text Solution

Verified by Experts

Given, `f(x)=(alphax)/(x+1)`
`f[f(x)]=f((alphax)/(x+1))=(alpha((alphax)/(x+1)))/((alphax)/(x+1)+1)`
`=((alpha^(2)x)/(x+1))/((alphax+(x+1))/(x+1))=(alpha^(2)x)/((alpha+1)x+1)=x` [given] ...(i)
`rArr alpha^(2)x=(alpha +1)x^(2)+x`
`rArr x[alpha^(2)-(alpha +1)x-1]=0`
`rArr x(alpha +1)(alpha -1-x)=0`
`rArr alpha -1=0 and alpha +1=0`
`rArr alpha = -1`
But `alpha =1` does nto satisfy the Eq. (i).
Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=(alpha x)/(x+1), x ne -1. Then, for what value of alpha " is " f[f(x)]=x ?

Let f(x ) = ( alpha x^2 )/(x+1),x ne -1 the value of alpha for which f(a) =a , (a ne 0) is

Let f(x)=sqrt(1+x^(2)) then

The domain of f(x) = (1)/( sqrt( |X|-x) is

The equation of the curve is y=f(x)dot The tangents at [1,f(1),[2,f(2)],a n d[3,f(3)] make angles pi/6,pi/3,a n dpi/4, respectively, with the positive direction of x-axis. Then the value of int_2^3f^(prime)(x)f^(x)dx+int_1^3f^(x)dx is equal to (a) -1/(sqrt(3)) (b) 1/(sqrt(3)) (c) 0 (d) none of these

Let f(x)=(x+1)^2-1, xgeq-1. Then the set {x :f(x)=f^(-1)(x)} is (a) {0,1,(-3+isqrt(3))/2,(-3-isqrt(3))/2} (b) {0,-1} (c) {0,1} (d) e m p t y

If f(x)=3sqrt(1−x^2)​+3sqrt(1−x^2)​, then f(x) is

The function f(x)=x(x+4)e^(-x//2) has its local maxima at x=adot Then (a) a=2sqrt(2) (b) a=1-sqrt(3) (c) a=-1+sqrt(3) (d) a=-4