Home
Class 12
MATHS
Let f: R->R be a continuous onto functio...

Let `f: R->R` be a continuous onto function satisfying `f(x)+f(-x)=0AAx in Rdot` If `f(-3)=2a n df(5)=4in[-5,5],` then the minimum number of roots of the equation `f(x)=0` is

Promotional Banner

Similar Questions

Explore conceptually related problems

Determine the function satisfying f^2(x+y)=f^2(x)+f^2(y)AAx ,y in Rdot

Let f be a continuous function satisfying f '(I n x)=[1 for 0 1 and f (0) = 0 then f(x) can be defined as

Let f:R->R be a continuous function such that |f(x)-f(y)|>=|x-y| for all x,y in R ,then f(x) will be

A continuous real function f satisfies f(2x)=3(f(x)AAx in RdotIfint_0^1f(x)dx=1, then find the value of int_1^2f(x)dx

A continuous real function f satisfies f(2x)=3(f(x)AAx in RdotIfint_0^1f(x)dx=1, then find the value of int_1^2f(x)dx

Let f: RvecR be a continuous function which satisfies f(x)= int_0^xf(t)dtdot Then the value of f(1n5) is______

Let f: R->R be a continuous function and f(x)=f(2x) is true AAx in Rdot If f(1)=3, then the value of int_(-1)^1f(f(x))dx is equal to (a)6 (b) 0 (c) 3f(3) (d) 2f(0)

Let f:R to R be a function satisfying f(x+y)=f(x)=lambdaxy+3x^(2)y^(2)"for all "x,y in R If f(3)=4 and f(5)=52, then f'(x) is equal to

Let f(x) be continuous functions f: RvecR satisfying f(0)=1a n df(2x)-f(x)=xdot Then the value of f(3) is 2 b. 3 c. 4 d. 5

If f is polynomial function satisfying 2+f(x)f(y)=f(x)+f(y)+f(x y)AAx , y in R and if f(2)=5, then find the value of f(f(2))dot