Home
Class 12
MATHS
Let f be a real-valued invertible funct...

Let `f` be a real-valued invertible function such that `f((2x-3)/(x-2))=5x-2, x!=2.` Then value of `f^(-1)(13)` is________

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f be a real-valued function such that f(x)+2f((2002)/x)=3xdot Then find f(x)dot

If f is a real valued function such that f(x+y) = f(x) + f(y) and f(1)=5, then the value of f(100) is

f(x) is a polynomial function, f: R rarr R, such that f(2x)=f'(x)f''(x). The value of f(3) is

f is a real valued function from R to R such that f(x)+f(-x)=2 , then int_(1-x)^(1+X)f^(-1)(t)dt=

If f(x) is an odd function, f(1)=3,f(x+2)=f(x)+f(2), then the value of f(3) is________

If f(x) is an odd function, f(1)=3,f(x+2)=f(x)+f(2), then the value of f(3) is________

Let f(x)=(x-1)(x-2)(x-3)(x-n),n in N ,a n df(n)=5040. Then the value of n is________

Let A={xinR:x" is not a positive integer "} define a function f:AtoR" such that "f(x)=(2x)/(x-1) . Then f is

Let f(x) be a twice-differentiable function and f''(0)=2. Then evaluate lim_(xto0) (2f(x)-3f(2x)+f(4x))/(x^(2)).

Let ("lim")_(x to1)(x^a-a x+a-1)/((x-1)^2)=f(a)dot Then the value of f(4) is _________