Home
Class 12
MATHS
Let f(x)=sqrt(|x|-{x})(w h e r e{dot} d...

Let `f(x)=sqrt(|x|-{x})(w h e r e{dot}` denotes the fractional part of `(x)a n dX , Y` are its domain and range, respectively). Then (a) `X in (-oo,1/2) ` and ` Y in (1/2,oo)` (b)`X in (-oo in ,1/2)uu[0,oo)a n dY in (1/2,oo)` (c)`X in (-oo,-1/2)uu[0,oo)a n dY in [0,oo)` (d) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x->-1)1/(sqrt(|x|-{-x}))(w h e r e{x} denotes the fractional part of (x) ) is equal to (a)does not exist (b) 1 (c) oo (d) 1/2

lim_(x->oo ){(e^x+pi^x)^(1/x)}= where {.} denotes the fractional part of x is equal to

If f^(prime)(x)=|x|-{x}, where {x} denotes the fractional part of x , then f(x) is decreasing in (-1/2,0) (b) (-1/2,2) (-1/2,2) (d) (1/2,oo)

The domain of the function f(x)=sqrt(log_((|x|-1))(x^2+4x+4)) is (a) (-3,-1)uu(1,2) (b) (-2,-1)uu(2,oo) (c) (-oo,-3)uu(-2,-1)uu(2,oo) (d)none of these

If (log)_3(x^2-6x+11)lt=1, then the exhaustive range of values of x is: (a) (-oo,2)uu(4,oo) (b) [2,4] (c) (-oo,1)uu(1,3)uu(4,oo) (d) none of these

The domain of f(x)="log"|logx|i s (a) (0,oo) (b) (1,oo) (c) (0,1)uu(1,oo) (d) (-oo,1)

For relation 2logy-logx-"log"(y-1) a. Domain =[4,+oo) ,range- (1,+oo) b. Domain =[4,+oo), range- (2,+oo) c. Domain =(2,+oo) ,range- (2,+oo) d. None of these

f(x)=(x-2)|x-3| is monotonically increasing in (a) (-oo,5/2)uu(3,oo) (b) (5/2,oo) (c) (2,oo) (d) (-oo,3)

The function defined by f(x)=(x+2)e^(-x) is (a)decreasing for all x (b)decreasing in (-oo,-1) and increasing in (-1,oo) (c)increasing for all x (d)decreasing in (-1,oo) and increasing in (-oo,-1)

IF the domain of the function f(x) =x^2 -6x +7 is (-oo , oo) then range of the function is