Home
Class 12
MATHS
If g(f(x))=|sinx|a n df(g(x))=(sinsqrt(x...

If `g(f(x))=|sinx|a n df(g(x))=(sinsqrt(x))^2` , then (a) `f(x)=sin^2x ,g(x)=sqrt(x)` (b) `f(x)=sinx ,g(x)=|x|` (c) `f(x) =x^2,g(x)=sinsqrt(x)` (d)` f and g` cannot be determined

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=2x-sin x and g(x)=3sqrt(x) . Then

If f(x) =x^(2) -2,g (x) =2x+ 1 then f^(@) g (x)

If intsinx d(secx)=f(x)-g(x)+c ,t h e n f(x)=secx (b) f(x)=tanx g(x)=2x (d) g(x)=x

If f(x)=1/x ,g(x)=1/(x^2), and h(x)=x^2 , then (A) f(g(x))=x^2,x!=0,h(g(x))=1/(x^2) (B) h(g(x))=1/(x^2),x!=0,fog(x)=x^2 (C) fog(x)=x^2,x!=0,h(g(x))=(g(x))^2,x!=0 (D) none of these

"If " int sinx d(secx)=f(x)-g(x)+c, then

If f(x)=sinx+cosx and g(x)=x^2-1 , then g(f (x)) is invertible in the domain .

If f(x)=sinx+cosx and g(x)=x^2-1 , then g(f (x)) is invertible in the domain .

Find x if g(f(f(x)))=f(g(g(x))), "given"f(x)=3x+1andg(x)=x+3 .

f(x)=(1+x) g(x)=(2x-1) Show that fo(g(x))=go(f(x))