Home
Class 11
MATHS
Prove that sqrt(x^2+2x+1)-sqrt(x^2-2x+1)...

Prove that `sqrt(x^2+2x+1)-sqrt(x^2-2x+1)`= `{-2 , x<-1, 2x, -1lt=xlt=1 2, x >1}`

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve 1-x=sqrt(x^2-2x+1.)

(x+2)/(sqrt(x^(2)-1))

Integrate (x^2 + 1) sqrt(x + 1)

(sqrt(x)+(1)/(sqrt(x)))^(2)

Integrate (x + 1)sqrt(2x + 3)

Solve sqrt(7-2x-x^(2))=x+1

lim_(xto oo)(sqrt(4x^(2)+2x+1)-sqrt(4x^(2)+1)) is

(2x + 3)/(sqrt(x^(2)+ 4 x + 1 ))

Prove that e^x+sqrt(1+e^(2x))geq(1+x)+sqrt(2+2x+x^2)AAx in R

(1)/(sqrt(x^(2) + 4x + 2 ))