Home
Class 11
MATHS
Let {an}(ngeq1) be a sequence such that...

Let `{a_n}(ngeq1)` be a sequence such that `a_1=1,a n d3a_(n+1)-3a_n=1` for all `ngeq1.` Then find the value of `a_(2002.)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If n! +(n-1) ! =3, then find the value of n.

If a_(n+1)=1/(1-a_n) for n>=1 and a_3=a_1 . then find the value of (a_2001)^2001 .

If a_(1) = 4 and a_(n + 1) = a_(n) + 4n for n gt= 1 , then the value of a_(100) is

Let a_(0)=0 and a_(n)=3a_(n-1)+1 for n ge 1 . Then the remainder obtained dividing a_(2010) by 11 is

If "^(2n+1)P_(n-1):^(2n-1)P_n=3:5, then find the value of ndot

If a_(1)=-1 and a_(n)=(a_(n-1))/(n+2) then the value of a_(4) is ____.

If a_1=1a n da_(n+1)=(4+3a_n)/(3+2a_n),ngeq1,a n dif("lim")_(nvecoo)a_n=a , then find the value of adot

If a_(1)=1 and a_(n)+1=(4+3a_(n))/(3+2a_(n)),nge1"and if" lim_(ntooo) a_(n)=a,"then find the value of a."

Consider a sequence {a_n}w i t ha_1=2a n da_n=(a n^2-1) /(a_(n-2)) for all ngeq3, terms of the sequence being distinct. Given that a_1a n da_5 are positive integers and a_5lt=162 then the possible value (s)ofa_5 can be a. 162 b. 64 c. 32 d. 2

Consider a sequence {a_n} with a_1=2 & a_n =(a_(n-1)^2)/(a_(n-2)) for all n ge 3 terms of the sequence being distinct .Given that a_2 " and " a_5 are positive integers and a_5 le 162 , then the possible values (s) of a_5 can be