Home
Class 11
MATHS
Prove that (666 ....6)^2+(888 .....8)=44...

Prove that `(666 ....6)^2+(888 .....8)=4444 ...... 4.` ``

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that tan(pi/16)+2tan(pi/8)+4=cot (pi/16) .

Prove that 6^(1//2)xx6^(1//4)xx6^(1//8)oo=6.

Prove that 2 sin 2^(@)+4sin 4^(@)+6sin 6^(@)+........+180sin 180^(@)=90 cot 10^(@) .

Prove that 3^(2n)-1 is divisible by 8.

underset("n-digits")((666 . . . .6)^(2))+underset("n-digits")((888 . . . .8)) is equal to

Find the sum of the following series up to n terms: (i) 5+55+555+...... (ii) .6+.66.+.666+.............

Prove that log_(4)2-log_(8)2+log_(6)2..."is"1-log_(e)2.

Prove that int_(0)^(pi/4)log(1+tanx)dx=(pi)/(8) log2.

Prove that cos 2 0^(@)cos4 0^(@)cos6 0^(@)cos8 0^(@)=1/16