Home
Class 11
MATHS
Using ("lim")(thetato0)(sintheta)/theta...

Using `("lim")_(thetato0)(sintheta)/theta=1` prove that the area of circle of radius `R` is `piR^2` (Figure)

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(thetato0)(sinsqrttheta)/sqrt(sintheta)......

(sintheta+sin2theta)/(1+costheta+cos2theta)

Evaluate : lim_(thetararr0)[(1-costheta)/(theta^2)] .

(1+tan^(2)theta)(1-sintheta)(1+sintheta)= ………… .

If sintheta+costheta=1/5"and"0 le theta ltpi, then tantheta is

lim_(thetararr0)[sinsqrt(2theta)]/[sqrt(sin2theta)] is :

If x=a(theta+sintheta), y=a(1-costheta) then prove that at theta=pi/2, y''=1/a .

Prove that (sintheta +sin2theta)/(1+costheta +cos2theta)=tantheta