Home
Class 11
MATHS
lim(x->0)[(1-e^x)(sinx)/(|x|)]i s(w h e ...

`lim_(x->0)[(1-e^x)(sinx)/(|x|)]i s(w h e r e[dot]` represents the greatest integer function). (a)`-1` (b) `1` (c) `0` (d) does not exist

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(xto0)(e^(sinx)-1)/x=

Prove that [lim_(xto0) (sinx)/(x)]=0, where [.] represents the greatest integer function.

f:(2,3)vec(0,1)d efin e db yf(x)=x-[x],w h e r e[dot] represents the greatest integer function.

Prove that [lim_(xto0) (tan^(-1)x)/(x)]=0, where [.] represents the greatest integer function.

Find the range of f(x)=(x-[x])/(1-[x]+x '),w h e r e[] represents the greatest integer function.

Evaluate: int_0^oo[2e^(-x)]dx ,w h e r e[x] represents greatest integer function.

("lim")_(xvec0)[min(y^2-4y+11)(sinx)/x](w h e r e[dot]d e not e st h e greatest integer function is 5 (b) 6 (c) 7 (d) does not exist

Evaluate: int_0^2[x^2-x+1]dx ,w h e r e[dot] denotos the greatest integer function.

Evaluate: int_(-5)^5x^2[x+1/2]dx(w h e r e[dot] denotes the greatest integer function).

Evaluate: int_0^(2pi)[sinx]dx ,w h e r e[x] denotes the greatest integer function.