Home
Class 11
MATHS
lim(x->0)(log(1+x+x^2)+"log"(1-x+x^2)...

`lim_(x->0)(log(1+x+x^2)+"log"(1-x+x^2))/(secx-cosx)=` (a)`-1` (b) 1 (c) 0 (d) 2

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(xto0)(1-cosx)/x^(2)

lim_(xto0)(log(1+3x^(2)))/(x(e^(5x)-1)) =

lim_(xto0)(sqrt(1+x^(2))-1)/(1-cosx)=

(log x)/( (1 + log x)^(2))

Find lim_(xrarr0)[log(1+x) -x]/x

Evaluate lim_(x to 0) (sinx+log(1-x))/(x^(2)).

lim_(x->oo)cot^(-1)(x^(-a)log_a x)/(sec^(-1)(a^xlog_x a)),(a >1) is equal to (a) 2 (b) 1 (c) (log)_a2 (d) 0

Evalaute lim_(xto0) (x2^(x)-x)/(1-cosx)

("lim")_(xvec0)1/xcos^(-1)((1-x^2)/(1+x^2)) is equal to (a)1 (b) 0 (c) 2 (d) none of these

(log)_(x-1)x (log)_(x-2)(x-1) (log)_(x-12)(x-11)=2,x is equal to: 9 (b) 16 (c) 25 (d) none of these