Home
Class 11
MATHS
Evaluate the left-and right-hand limits ...

Evaluate the left-and right-hand limits of the function `f(x)={(|x-4|)/(x-4),x!=4 0,x=4a tx=4`

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate the left-and right-hand limits of the function defined by f(x)={(1+x^2, 0lex<1), (2-x ,x gt1):} at x=1 Also, show that lim_(xrarr1)f(x) does not exist

Find the range of the function f(x)=x^2-2x-4.

Find the left and right limits of f(x)=(x^2-4)/((x^2+4x+4)(x+3)) at x=-2 .

What value must be assigned to k so that the function f(x)={(x^4-256)/(x-4),x!=4 and k ,x=4 is continuous at x=4.

For the function f(x)=x^4(12(log)_e x-7)

Find the domain of the function f(x)=(x^(2)+3x+5)/(x^(2)-5x+4)

Find the range of the function f(x)=(x^4+x^2+5)/((x^2+1)^2)

Find the range of the function f(x)=2sqrt(x-2)+sqrt(4-x)

Find the left and right limits of f(x)=(x^(2)-4)/((x^(2)+4x+4)(x+3)) at x = -2

Find the local extremum of the function f(x)=x^(4)+32