Home
Class 11
MATHS
If f(x)={(x^nsin(1/(x^2)),x!=0), (0,x=0...

If `f(x)={(x^nsin(1/(x^2)),x!=0), (0,x=0):}`, `(n in I)`, then (a) `lim_(xrarr0)f(x)` exists for `n >1` (b) `lim_(xrarr0)f(x)` exists for `n<0` (c) `lim_(xrarr0)f(x)` does not exist for any value of `n` (d) `lim_(xrarr0)f(x)` cannot be determined

Promotional Banner

Similar Questions

Explore conceptually related problems

Find (a) lim_(xrarr0)tanx/|x|

Evaluate : lim_(xrarr0)(tanx)/(x)

Evaluate: lim_(xrarr0)x^x

lim_(xrarr0)(xe^x -sin2x)/x is :

lim_(xrarr0)[xe^(2x) +tanx]/x is :

Find lim_(xrarr0)[log(1+x) -x]/x

Find (b) lim_(xrarr0)[x|x|]/[tan|x|]

Calculate lim_(xrarr0)1/(x +x^3)

Evaluate: ("lim")_(xrarr0)(sinx^0)/x

If f(x)={{:(x","" "xlt0),(1","" "x=0),(x^(2)","" "xgt0):}," then find " lim_(xto0) f(x)" if exists.