Home
Class 11
MATHS
If f(x)={(x-|x|)/x ,x!=0 ,x=0,s howt h a...

If `f(x)={(x-|x|)/x ,x!=0 ,x=0,s howt h a t("lim")_(xto0)` `f(x)` does not exist.

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(xto0)(tan2x)/x

f(x)={x ,xlt=0 1,x=0,then find ("lim")_(xvec0) f(x) if exists x^2,x >0

If f(x)=x(-1)^[1/x] xle0 , then the value of lim_(xto0)f(x) is equal to

Show that ("lim")_(xto0) (e^ (1/x)+1 / e^ (1/x)-1) does not exist

Sketch the graph of a function f that satifies the given values: f(-2)=0 , f(2)=0 , lim_(x to -2) f(x)=0 , lim_(x to 2) f(x) does not exist.

lim_(xto0)(tan2x)/(sin5x)

lim_(xto0)(e^(x)-e^(-x))/sinx

Sketch the graph of a function f that satisfies the given values: f(-2) = 0 , f(2) = 0 , lim_(xto-2)f(x)=0 lim_(xto2)f(x) does not exist.

Consider the following graph of the function y=f(x). Which of the following is//are correct? (a) lim_(xto1) f(x) does not exist. (b) lim_(xto2)f(x) does not exist. (c) lim_(xto3) f(x)=3. (d)lim_(xto1.99) f(x) exists.