Home
Class 11
MATHS
f(n)=lim(x->0){(1+sin(x/2))(1+sin(x/2^2)...

`f(n)=lim_(x->0){(1+sin(x/2))(1+sin(x/2^2)).......(1+sin(x/2^n))}^(1/x)` then find `lim_(n->oo)f(n)`

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(xto0)(sin2x)/(1-sqrt(1-x))

Evaluate: lim_(x->0)(1/(x^2)-1/(sin^2x))

If (x^2+x−2)/(x+3) 1) f(x) then find the value of lim_(x->1) f(x)

lim_(x->0)((1^x+2^x+...........+n^x)/n)^(1/x) is equal to

lim_(x->0) (2+2x+sin2x)/((2x+sin2x)e^sinx) is

Evaluate : lim_(xrarr0)(sin4x)/(sin2x)

Evaluate: ("lim")_(xvec0)(1^(1//sin^(2)x)+2^(1/(sin^(2)x)+....+n^(1//sin^(2)x)))^(sin^(2)x)

Evaluate lim_(x to 0) x^2 sin (1/x) .

Evaluate: lim_(x->2)(sin(e^(x-2)-1))/(log(x-1))

lim_(xto oo)((1)/(1-n^(2))+(2)/(1-n^(2))+ . . .+(n)/(1-n^(2))) is