Home
Class 11
MATHS
Evaluate the following limits using sand...

Evaluate the following limits using sandwich theorem: `lim_(x->oo)([x])/x ,w h e r e[dot]` represents greatest integer function.

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate the following limits using sandwich theorem: ("lim")_(xtooo)((log)_e x)/x

Evaluate: int_0^oo[2e^(-x)]dx ,w h e r e[x] represents greatest integer function.

Evaluate: ("lim")_(xvec0)(tanx)/x where [dot] represents the greatest integer function

Find the range of f(x)=(x-[x])/(1-[x]+x '),w h e r e[] represents the greatest integer function.

Evaluate: int_0^(100)x-[x]dx where [dot] represents the greatest integer function).

Evaluate: int_0^(10pi)[tan^(-1)x]dx ,w h e r e[x] represents greatest integer function.

Evaluate : [lim_(x to 0) (tan x)/(x)] , where [*] represents the greatest integer function.

Prove that [lim_(xto0) (sinx)/(x)]=0, where [.] represents the greatest integer function.

Prove that int_0^oo[cot^(-1)x]dx ,w h e r e[dot] denotes the greatest integer function.

Evaluate: int_0^2[x^2-x+1]dx ,w h e r e[dot] denotos the greatest integer function.