Home
Class 11
MATHS
If a0, a1, a2, a3 are all the positive,...

If `a_0, a_1, a_2, a_3` are all the positive, then `4a_0x^3+3a_1x^2+2a_2x+a_3=0` has least one root in `(-1,0)` if (a) `a_0+a_2=a_1+a_3 ` and `4a_0+2a_2>3a_1+a_3` (b) `4a_0+2a_2<3a_1+a_3` (c) `4a_0+2a_2=3a_1+a_0`and `4a_0+a_2lta_1+a_3` (d) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

Let a_1,a_2,a_3…… ,a_n be in G.P such that 3a_1+7a_2 +3a_3-4a_5=0 Then common ratio of G.P can be

If a_1,a_2, a_3, a_4 be the coefficient of four consecutive terms in the expansion of (1+x)^n , then prove that: (a_1)/(a_1+a_2)+(a_3)/(a_3+a_4)=(2a_2)/(a_2+a_3)dot

Let a_1,a_2,a_3,... be in harmonic progression with a_1=5a n da_(20)=25. The least positive integer n for which a_n<0

Suppose four distinct positive numbers a_1, a_2, a_3, a_4, are in G.P. Let b_1=a_1,b_2=b_1+a_2.b_3=b_2+a_3 and b_4=b_3+a_1.

If a_1, a_2, ,a_n >0, then prove that (a_1)/(a_2)+(a_2)/(a_3)+(a_3)/(a_4)++(a_(n-1))/(a_n)+(a_n)/(a_1)> n

Let n be a positive integer and (1+x+x^2)^n=a_0+a_1x++a^(2n)x^(2n)dot Show that a_0^2-a_1^ 2+a_2^ 2++'a_2n' x^2=a_ndot

If (1 +x+x^2)^25 = a_0 + a_1x+ a_2x^2 +..... + a_50.x^50 then a_0 + a_2 + a_4 + ... + a_50 is :

If a_1,a_2,a_3 ,….""a_n is an aritmetic progression with common difference d. prove that tan [ tan ^(-1) ((d)/( 1+ a_1a_2))+ tan^(-1) ((d)/(1+a_2a_3))+…+((d)/(1+a_n a_( n-1))) ] = (a_n -a_1)/(1 +a_1 a_n )

If 3(a+2c)=4(b+3d), then the equation a x^3+b x^2+c x+d=0 will have (a)no real solution (b)at least one real root in (-1,0) (c)at least one real root in (0,1) (d)none of these

If a_1, a_2, a_3(a_1>0) are three successive terms of a G.P. with common ratio r , for which a_3>4a_2-3a_1 holds is given by