Home
Class 11
MATHS
("lim")(xvecoo)(1/e-x/(1+x))^xi se q u a...

`("lim")_(xvecoo)(1/e-x/(1+x))^xi se q u a lto` `e/(1-e)` (b) 0 (c) `e/(e^(1-e))` (d) does not exist

Promotional Banner

Similar Questions

Explore conceptually related problems

("lim")_(xrarroo)(1/e-x/(1+x))^x is equal to (a) e/(1-e) (b) 0 (c) e/(e^(1-e)) (d) does not exist

("lim")_(xvecoo)[(e/(1-e))(1/e-x/(1+x))]^xi s e^((1-e)) (b) e^(((1-e)/e)) (c) e^((e/(1-e))) (d) e^(((1+e)/e))

("lim")_(xto0)((1+tanx)/(1+sinx))^(cos e cx)i se q u a l t o (a)e (b) 1/e (c) 1 (d) none of these

For x in R , lim_(xrarroo)((x-3)/(x+2))^x is equal to (a) e (b) e^(-1) (c) e^(-5) (d) e^5

Show that ("lim")_(xto0) (e^ (1/x)+1 / e^ (1/x)-1) does not exist

lim_(xto0)(e^(sinx)-1)/x=

int((x^2+1))/((x+1)^2)dxi se q u a lto ((x-1)/(x+1))e^x+c (b) e^x((x+1)/(x-1))+c e^x(x+1)(x-1)+c (d) none of these

lim_(xto1)(e^(x)-e)/(x-1)= ……………

("lim")_(xvec1)[cos e c(pix)/2]^(1/((1-x)))(w h e r e[dot]r e p r e s e n t st h e gif is e q u a l to (a) 0 (b) 1 (c) oo (d) does not exist

The value of int_0^1e^(x^2-x)dx is (a) 1 (c) > e^(-1/4) (d) none of these