Home
Class 11
MATHS
("lim")(xvec1)(1-x^2)/(s in2pix)i se q u...

`("lim")_(xvec1)(1-x^2)/(s in2pix)i se q u a lto` `1/(2pi)` (b) `-1/pi` (c) `(-2)/pi` (d) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x->1)(1-x^2)/(sin2pix) is equal to (a) 1/(2pi) (b) -1/pi (c) (-2)/pi (d) none of these

("lim")_(xvec0)("cos"(tanx)-cosx)/(x^4)i se q u a lto 1/6 (b) -1/3 (c) 1/2 (d) 1

("lim")_(xvec0)(x^4(cot^4x-cot^2x+1)/((tan^4x-tan^2x+1)i se q u a lto 1 (b) 0 (c) 2 (d) none of these

int_0^oo(dx)/([x+sqrt(x^2+1)]^3)i se q u a lto 3/8 (b) 1/8 (c) -3/8 (d) none of these

("lim")_(xto0)((1+tanx)/(1+sinx))^(cos e cx)i se q u a l t o (a)e (b) 1/e (c) 1 (d) none of these

("lim")_(xvec0)(sinx^n)/((sinx)^m),(m

("lim")_(xvec0)(sinx^n)/((sinx)^m),(m

If f(x)=0 is a quadratic equation such that f(-pi)=f(pi)=0 and f(pi/2)=-(3pi^2)/4, then lim_(x->-pi)(f(x))/("sin"(sinx) is equal to (a) 0 (b) pi (c) 2pi (d) none of these

("lim")_(xvecoo)"{"x+5")"tan^(-1)(x+5)-(x+1)tan^(-1)(x+1)} is equal to (a) pi (b) 2pi (c) pi/2 (d) none of these

The value of integral int_0^(1/sqrt3) (dx)/((1+x^2)sqrt(1-x^2)) must be (a) 3+2pi (b) 4-pi (c) 2+pi (d) none of these