Home
Class 11
MATHS
The maximum value of |a r g(1/(1-z))| fo...

The maximum value of `|a r g(1/(1-z))|` for |z|=1,`z!=1` is given by.

Promotional Banner

Similar Questions

Explore conceptually related problems

The least value of |z+(1)/(z)|" if "|z|ge 3 is

Find the minimum value of |z-1 if ||z-3|-|z+1||=2.

If, |z+4| le 3 , then the maximum value of |z+1| is

If |z| = 1, then the value of (1+z)/(1 +bar(z)) .

If w=alpha+ibeta, where beta!=0 and z!=1 , satisfies the condition that ((w- barw z)/(1-z)) is a purely real, then the set of values of z is |z|=1,z!=2 (b) |z|=1a n dz!=1 z= z (d) None of these

Fir any complex number z, the minimum value of |z|+|z-1| is

The maximum area of the triangle formed by the complex coordinates z, z_1,z_2 which satisfy the relations |z-z_1|=|z-z_2| and |z-(z_1+z_2 )/2| |z_1-z_2| is

If z=((1+i)/(1-i))^(9) find z+(1)/(z)