Home
Class 11
MATHS
Let z, omega be complex numbers such tha...

Let `z, omega` be complex numbers such that `bar(z)+ibar(omega)=0" and "arg z omega= pi`. Then arg z equals

Promotional Banner

Similar Questions

Explore conceptually related problems

z and omega are two nonzero complex number such that |z|=|omega|" and "Argz+Arg omega= pi then z equals

If z and omega are two non-zero complex numbers such that |z omega|=1" and "arg(z)-arg(omega)=(pi)/(2) , then bar(z)omega is equal to

Let z_(1)" and "z_(2) be complex numbers such that z_(1)+ i(bar(z_2))=0" and "arg(bar(z_1)z_2)=(pi)/(3) . Then arg(bar(z_1)) is

Let z and omega be two complex numbers such that |z|lt=1,|omega|lt=1 and |z-iomega|=|z-i bar omega|=2, then z equals (a) 1ori (b). ior-i (c). 1or-1 (d). ior-1

If omega is any complex number such that z omega=|z|^(2) and |z-barz|+|omega+baromega|=4 , then as omega varies, then the area bounded by the locus of z is

The modulus of the complex number z such that |z+3-i|=1" and "arg z= pi is equal to

Let z be any non zero complex number then arg z + arg barz =

Let za n dw be two nonzero complex numbers such that |z|=|w|a n d arg(z)+a r g(w)=pidot Then prove that z=- bar w dot

Let omega be a complex number such that 2omega+1=z where z=sqrt(-3.) If|1 1 1 1-omega^2-1omega^2 1omega^2omega^7|=3k , then k is equal to : -1 (2) 1 (3) -z (4) z

The number of complex numbers z such that |z|=1 and |z/ barz + barz/z|=1 is arg(z) in [0,2pi)) then a. 4 b. 6 c. 8 d. more than 8