Home
Class 11
MATHS
If omega(!= 1) be an imaginary cube root...

If `omega(!= 1)` be an imaginary cube root of unity and `(1+omega^2)=(1+omega^4),` then the least positive value of `n` is (a) `2` (b) `3` (c) `5` (d) `6`

Promotional Banner

Similar Questions

Explore conceptually related problems

If omega is a cube root of unity and (omega-1)^7=A+Bomega then find the values of A and B

If omega is a non real cube root of unity, then (a+b)(a+b omega)(a+b omega^2)=

If omega ne 1 is a cubic root of unit and (1 + omega)^(7) = A + B omega , then (A, B) equals

If the cube roots of unity are 1, omega, omega^(2) then the roots of the equation (x-1)^(3)+8=0 , are

If omega is an imaginary cube root of unity, then (1+omega-omega^2)^7 is equal to (a) 128omega (b) -128omega (c) 128omega^2 (d) -128omega^2

If 1, omega omega^(2) are the cube roots of unity show that (1 + omega^(2))^(3) - (1 + omega)^(3) = 0

Let omega be a imaginary root of x^(n)=1 . Then (5- omega)(5- omega^2)"………"(5-omega^(n-1)) is