Home
Class 11
MATHS
Given a real-valued function f such that...

Given a real-valued function `f` such that `f(x)={{:((tan^(2){x})/((x^(2)-[x]^(2)))", ""for "xgt0),(" "1", "" for "x=0),(sqrt({x}cot{x})", "" for "xlt0):}`
where `[x]` is the integral part and `{x}` is thefractional part of x, then

Promotional Banner

Similar Questions

Explore conceptually related problems

Given a real valued function f such that f(x)={tan^2[x]/(x^2-[x]^2) , x lt 0 and 1 , x=0 and sqrt({x}cot{x}) , x lt 0 where [.] represents greatest integer function then

If f(x)={(sin(x^(2)-3x),xle0 .^x+5x^(2),xgt0

Let f(x) = x-[x] , for every real number x, where [x] is integral part of x. Then int_(-1) ^1 f(x) dx is

The largest domain for the real valued function given by f(x) =(sqrt(16-x^(2)))/(sqrt(x^(2)-1)) is:

The probability density function of X is given by f(x)={{:(kxe^(-2x), "for " x gt 0), (0, "for " x le 0):} Find the value of k.