Home
Class 11
MATHS
L=(lim)(x->a)(|2sinx-1|)/(2sinx-1)dot...

`L=(lim)_(x->a)(|2sinx-1|)/(2sinx-1)dotT h e n` limit does not exist when (a) `a=pi/6` (b) `L=-1 when a=pi` (c) `L=1 when a=pi/2` (d) `L=1 when a=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(xto pi/2)(1+sinx)^(2"cosec"x)

lim_(xrarr(pi)/(2)) (1-sinx)tanx=

Evaluate: int_(-pi/2)^(2pi)sin^(-1)(sinx)dx

If L=lim_(x->2) ((10-x)^(1/3) -2)/(x-2), then the value of |1/(4L)| is

lim_(xto(pi)/(6))(2sin^(2)x+sinx-1)/(2sin^(2)x-3sinx+1)=

If L=lim_(x->0)(e^(-(x^2/2))-cosx)/(x^3 sinx), then the value of 1/(3L) is

lim_(x->-1)1/(sqrt(|x|-{-x}))(w h e r e{x} denotes the fractional part of (x) ) is equal to (a)does not exist (b) 1 (c) oo (d) 1/2

If lim_(x->0)[1+x1n(1+b^2)]^(1/x)=2bsin^2theta,b >0 ,where theta in (-pi,pi], then the value of theta is (a) +-pi/4 (b) +-pi/3 (c) +-pi/6 (d) +-pi/2

Let f(x)=(lim)_(h->0)(("sin"(x+h))^(1n(x+h))-(sinx)^(1nx))/hdot Then f(pi/2) equal to (a)0 (b) equal to 1 (c)In pi/2 (d) non-existent

Let L=lim_(x->0)(a-sqrt(a^2-x^2)-(x^2)/4)/(x^4),a > 0 . If L is finite ,then (a) a=2 (b) a=1 (c) L=1/(64) (d) L=1/(32)