Home
Class 11
MATHS
Let a ,b , c be the sides of a triangle...

Let `a ,b , c` be the sides of a triangle, where `a!=b!=c` and `lambda in R` . If the roots of the equation `x^2+2(a+b+c)x+3lambda(a b+b c+c a)=0` are real. Then a.`lambda<4/3` b. `lambda>5/3` c. `lambda in (1/3,5/3)` d. `lambda in (4/3,5/3)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If a, b, c are the sides of a triangle ABC such that x^2+2(a+b+c)x+3lambda(a b+b c+c a)=0 has real roots.then

If a+b+c=0 then check the nature of roots of the equation 4a x^2+3b x+2c=0 where a ,b ,c in R

If the lines 3x + 4y+ 1 = 0, 5x +lambda y + 3 = 0 and 2x + y-1 = 0 are concurrent, then lambda=

If roots alpha, beta of the equation (x^(2)-bx)/(ax-c)=(lambda-1)/(lambda+1) are such that alpha+ beta=0 , then the value of lambda is

If the equation |x^2-5x + 6|-lambda x+7 lambda=0 has exactly 3 distinct solutions then lambda is equal to

If sides of triangle A B C are a , ba n dc such that 2b=a+c then b/c >2/3 (b) b/c >1/3 b/c<2 (d) b/c<3/2

If a lt b lt c lt d , then for any real non-zero lambda , the quadratic equation (x-a)(x-c)+lambda(x-b)(x-d)=0 ,has

If vec a , vec b , vec c are non-coplanar vector and lambda is a real number, then the vectors vec a+2 vec b+3 vec c ,lambda vec b+mu vec ca n d(2lambda-1) vec c are coplanar when a. mu in R b. lambda=1/2 c. lambda=0 d. no value of lambda

The equation (x^(2))/(9-lambda)+(y^(2))/(4-lambda) =1 represents a hyperbola when a lt lambda lt b then (b-a)=

If in any triangle, the area DeltaABC le(b^(2)+c^(2))/(lambda) , then the largest possible numerical value of lambda is