Home
Class 11
MATHS
Given ("lim")(xvec0)(f(x))/(x^2)=2,w h e...

Given `("lim")_(xvec0)(f(x))/(x^2)=2,w h e r e[dot]` denotes the greatest integer function, then (a) `("lim")_(xvec0)[f(x)]=0` (b) `("lim")_(xvec0)[f(x)]=1` (c)`("lim")_(xvec0)[(f(x))/x]` does not exist (d)`("lim")_(xvec0)[(f(x))/x]` exists

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate: ("lim")_(xvec0)(tanx)/x where [dot] represents the greatest integer function

Evaluate: ("lim")_(xvec0)(1-cos2x)/(x^2)

Let f(x)=(x^2-9x+20)/(x-[x]) (where [x] is the greatest integer not greater than xdot Then (a) ("lim")_(xvec5)f(x)=1 (b) ("lim")_(xvec5)f(x)=0 (c) ("lim")_(xvec5)f(x)does not exist (d)none of these

If [dot] denotes the greatest integer function, then (lim)_(xvec0)x/a[b/x] b/a b. 0 c. a/b d. does not exist

("lim")_(xvec1)(xsin(x-[x]))/(x-1),w h e r e[dot] denotes the greatest integer function is equal to (a) 0 (b) -1 (c) not exist (d) none of these

If f(x)=x((e^(|x|+[x])-2)/(|x|+[x])) then (where [.] represents the greatest integer function) (lim)_(xvec0^+)f(x)=-1 b. (lim)_(xvec0^-)f(x)=0 c. (lim)_(xvec0^)f(x)=-1 d. (lim)_(xvec0^)f(x)=0

("lim")_(xvec0)[(sin(sgn(x)))/((sgn(x)))], where [dot] denotes the greatest integer function, is equal to (a)0 (b) 1 (c) -1 (d) does not exist

("lim")_(xvec0)[min(y^2-4y+11)(sinx)/x](w h e r e[dot]d e not e st h e greatest integer function is 5 (b) 6 (c) 7 (d) does not exist

(lim)_(xvec(-1^)/3)1/x[(-1)/x]= (where [.] denotes the greatest integer function) a. -9 b. -12 c. -6 d. 0

Evaluate: ("lim")_(xvec0)(1+x)^(os e cx c)