Home
Class 11
MATHS
If n1, n2 are positive integers, then (1...

If `n_1, n_2` are positive integers, then `(1 + i)^(n_1) + ( 1 + i^3)^(n_1) + (1 + i_5)^(n_2) + (1 + i^7)^(n_2)` is real if and only if :

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the least positive integer n such that ((1 + i)/(1 - i))^(n) = 1 .

Prove that (1 + i)^(n) + (1 - i)^(n) = 2^((n + 2)/(2)) cos (n pi)/(4)

i^(n) + i^(n+1) + i^(n + 2) + i^(n + 3)

Find the least positive integer n such that ((1+i)/(1-i))^(n)=1 .

The smallest positive integer 'n' for which ((1+i)/(1-i))^(n)=1 is

The least positive integer n such that ((2i)/(1 + i))^(n) is a positive integer is

If (1 + i)(1 + 2i)(1 + 3i)….(1 + ni) = x + iy, then 2.5.10… (1 + n^(2)) is

If n is a positive integer, prove that |I m(z^n)|lt=n|Im(z)||z|^(n-1.)

For and odd integer n ge 1, n^(3) - (n - 1)^(3) + …… + (- 1)^(n-1) 1^(3)