Home
Class 11
MATHS
The value of lim(x->0)([(100 x)/(sinx)]+...

The value of `lim_(x->0)([(100 x)/(sinx)]+[(99sinx)/x])` (where [.] represents the greatest integral function) is (a)`199` (b) ` 198` (c)` 0 ` (d) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that [lim_(xto0) (sinx)/(x)]=0, where [.] represents the greatest integer function.

lim_(x->0)[(1-e^x)(sinx)/(|x|)]i s(w h e r e[dot] represents the greatest integer function). (a) -1 (b) 1 (c) 0 (d) does not exist

Prove that [lim_(xto0) (tan^(-1)x)/(x)]=0, where [.] represents the greatest integer function.

Evaluate: ("lim")_(xvec0)(tanx)/x where [dot] represents the greatest integer function

Prove that [lim_(xrarr0) (sinx.tanx)/(x^(2))]=1 ,where [.] represents greatest integer function.

lim_(x-(pi)/(2)) [([sinx]-[cosx]+1)/(3)]= (where [.] denotes the greatest integer integer function)

The value of int_0^(2pi)[2 sin x] dx , where [.] represents the greatest integral functions, is

Evaluate : [lim_(x to 0) (tan x)/(x)] , where [*] represents the greatest integer function.

Evaluate: int_0^(100)x-[x]dx where [dot] represents the greatest integer function).

lim_(xrarr0) [(sin^(-1)x)/(tan^(-1)x)]= (where [.] denotes the greatest integer function)