Home
Class 11
MATHS
("lim")(xvec1)(xsin(x-[x]))/(x-1),w h e ...

`("lim")_(xvec1)(xsin(x-[x]))/(x-1),w h e r e[dot]` denotes the greatest integer function is equal to (a) 0 (b) `-1` (c) not exist (d) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

("lim")_(xvec0)[(sin(sgn(x)))/((sgn(x)))], where [dot] denotes the greatest integer function, is equal to (a)0 (b) 1 (c) -1 (d) does not exist

int_(-1)^2[([x])/(1+x^2)]dx ,w h e r e[dot] denotes the greater integer function, is equal to -2 (b) -1 z e ro (d) none of these

("lim")_(xvec0)[min(y^2-4y+11)(sinx)/x](w h e r e[dot]d e not e st h e greatest integer function is 5 (b) 6 (c) 7 (d) does not exist

Evaluate: int_0^2[x^2-x+1]dx ,w h e r e[dot] denotos the greatest integer function.

Evaluate: int_1^(e^6)[(logx)/3]dx ,w h e r e[dot] denotes the greatest integer function.

Evaluate: ("lim")_(xvec0)(tanx)/x where [dot] represents the greatest integer function

lim_(xrarr0) [(sin^(-1)x)/(tan^(-1)x)]= (where [.] denotes the greatest integer function)

Evaluate: int_0^(2pi)[sinx]dx ,w h e r e[x] denotes the greatest integer function.

Evaluate: int_(-5)^5x^2[x+1/2]dx(w h e r e[dot] denotes the greatest integer function).

Prove that int_0^oo[cot^(-1)x]dx ,w h e r e[dot] denotes the greatest integer function.