Home
Class 11
MATHS
("lim")(xvec0)[(sin(sgn(x)))/((sgn(x)))]...

`("lim")_(xvec0)[(sin(sgn(x)))/((sgn(x)))],` where`[dot]` denotes the greatest integer function, is equal to (a)0 (b) 1 (c) `-1` (d) does not exist

Promotional Banner

Similar Questions

Explore conceptually related problems

("lim")_(xvec1)(xsin(x-[x]))/(x-1),w h e r e[dot] denotes the greatest integer function is equal to (a) 0 (b) -1 (c) not exist (d) none of these

lim_(xrarr0) [(sin^(-1)x)/(tan^(-1)x)]= (where [.] denotes the greatest integer function)

Evaluate ("lim")_(xvec(5pi)/4) [sinx+cosx], where [.] denotes the greatest integer function.

If [dot] denotes the greatest integer function, then (lim)_(xvec0)x/a[b/x] b/a b. 0 c. a/b d. does not exist

Evaluate: ("lim")_(xrarr0) (sin[cosx])/(1+[cosx])([dot] denotes the greatest integer function).

lim_(x->0)[(1-e^x)(sinx)/(|x|)]i s(w h e r e[dot] represents the greatest integer function). (a) -1 (b) 1 (c) 0 (d) does not exist

("lim")_(xvec0)[min(y^2-4y+11)(sinx)/x](w h e r e[dot]d e not e st h e greatest integer function is 5 (b) 6 (c) 7 (d) does not exist

lim_(xto1) [cosec(pix)/(2)]^(1//(1-x)) (where [.] represents the greatest integer function) is equal to

Evaluate: int_0^((5pi)/(12))[tanx]dx , where [dot] denotes the greatest integer function.