Home
Class 11
MATHS
If f(x)=0 is a quadratic equation such ...

If `f(x)=0` is a quadratic equation such that `f(-pi)=f(pi)=0` and `f(pi/2)=-(3pi^2)/4,` then `lim_(x->-pi)(f(x))/("sin"(sinx)` is equal to (a)`0` (b) `pi` (c) `2pi` (d) none of these

A

`-(3)/(2)pi`

B

`-(1)/(2)`

C

`(2pi)`

D

`(3)/(2)pi`

Text Solution

Verified by Experts

Given `f(x)=x^(2)-pi^(2)`
`underset(xto-pi^+)lim(x^(2)-pi^(2))/(sin(sinx))=underset(hto0)lim((-pi+h)^(2)-pi^(2))/(sin(sin(-pi+h)))`
`=underset(hto0)lim(-2hpi+h^(2))/(-sin(sinh))`
`=underset(hto0)lim(h-2pi)/((-sin(sinh))/(sinh)xx(sinh)/(h))=2pi`
Promotional Banner

Similar Questions

Explore conceptually related problems

(lim)_(xrarr0)(sin(picos^2x)/(x^2)) is equal to (a) -pi (b) pi (c) pi/2 (d) 1

int_0^oo(x dx)/((1+x)(1+x^2)) is equal to (A) pi/4 (B) pi/2 (C) pi (D) none of these"

int_0^oo(pi/(1+pi^2x^2)-1/(1+x^2))logxdx is equal to (a) -pi/2lnpi (b) 0 (c) pi/2ln2 (d) none of these

If fx=x+sinx , then int_(pi)^(2pi)f^(-1)(x)dx is equal to

Let f(x)=(lim)_(h->0)(("sin"(x+h))^(1n(x+h))-(sinx)^(1nx))/hdot Then f(pi/2) equal to (a)0 (b) equal to 1 (c)In pi/2 (d) non-existent

A function f(x) is such that f(x+pi/2)=pi/2-|x|AAxdot Find f(pi/2),ifi te xi s t sdot

The range of f(x)=sin^(-1)((x^2+1)/(x^2+2)) is [0,pi/2] (b) (0,pi/6) (c) [pi/6,pi/2] (d) none of these

The value of the definite integral int_0^(pi/2)(sin5x)/(sinx)dxi s 0 (b) pi/2 (c) pi (d) 2pi

If f(x)=sin^(-1)cosx , then the value of f(10)+f^(prime)(10) is (a) 11-(7pi)/2 (b) (7pi)/2-11 (c) (5pi)/2-11 (d) none of these

Let f be a differentiable function satisfying int_(0)^(f(x))f^(-1)(t)dt-int_(0)^(x)(cost-f(t)dt=0 and f((pi)/2)=2/(pi) The value of lim_(x to 0)(cosx)/(f(x)) is equal to where [.] denotes greatest integer function