Home
Class 11
MATHS
The complex number sinx+icos2x and cosx-...

The complex number `sinx+icos2x` and `cosx-isin2x` are conjugate to each other when

Promotional Banner

Similar Questions

Explore conceptually related problems

For what values of x and y the numbers -3+ix^(2)y and x^(2)+y+4i and complex conjugate to each other.

Find int(cos2x)/((cosx+sinx)^(2))dx .

The number of solution of 2cosx=|sinx| where x in [0.4pi] is/are

The number of solutions of [sinx+cosx]=3+[-sinx]+[-cosx](w h e r e[] denotes the greatest integer function), x in [0,2pi] , is 0 (b) 4 (c) infinite (d) 1

Evaluate int(3sinx+2cosx)/(3cosx+2sinx)dx.

prove that [2(sin^3 x - cos^3 x )/(sinx -cosx)]-sin2x=2

Solve |sinx +cos x |=|sinx|+|cosx|, x in [0,2pi] .

The conjugate of a complex number is (1)/(i-2) . Then, the complex number is

Prove that sinx +sin2x +sin3x =sin2x (1+2cosx) .