Home
Class 11
MATHS
If omega is an imaginary fifth root of ...

If `omega` is an imaginary fifth root of unity, then find the value of `log_2|1+omega+omega^2+omega^3-1//omega|dot`

Promotional Banner

Similar Questions

Explore conceptually related problems

If omega is a cube root of unity, then find the value of the following: (1+omega-omega^2)(1-omega+omega^2)

If omega is a cube root of unity, then the value of (1 - omega + omega^2)^4 + (1 + omega - omega^2)^(4) is ……….

If omega is the cube root of unity, then then value of (1 - omega) (1 - omega^(2))(1 - omega^(4))(1 - omega^(8)) is

If omega is an imaginary cube root of unity, then (1+omega-omega^2)^7 is equal to (a) 128omega (b) -128omega (c) 128omega^2 (d) -128omega^2

If omega is a cube root of unity and (omega-1)^7=A+Bomega then find the values of A and B

If omega is a complex cube root of unity, then the value of sin{(omega^(10)+omega^(23))pi- (pi)/(6)} is

If omega is a complex cube root of unity, then (a+b omega+c omega^(2))/(c+a omega+b omega^(2))+(c+a omega+b omega^(2))/(a +b omega+c omega^(2))+(b+c omega+a omega^(2))/(b+c omega+a omega^(5))=

If 1, omega omega^(2) are the cube roots of unity then show that (1 + 5omega^(2) + omega^(4)) ( 1 + 5omega + omega^(2)) ( 5 + omega + omega^(5)) = 64.

If omega!=1 is a cube root of unity and x+y+z!=0, then prove that |x/(1+omega)y/(omega+omega^2)z/(omega^2+1)y/(omega+omega^2)z/(omega^2+1)x/(1+omega)(z z)/(omega^2+1)x/(1+omega)y/(omega+omega^2)|=0 if x=y=z