Home
Class 11
MATHS
If w=alpha+ibeta, where beta!=0 and z!=1...

If `w=alpha+ibeta,` where `beta!=0` and `z!=1` , satisfies the condition that `((w- barw z)/(1-z))` is a purely real, then the set of values of `z` is `|z|=1,z!=2` (b) `|z|=1a n dz!=1` `z= z ` (d) None of these

Promotional Banner

Similar Questions

Explore conceptually related problems

If (z - 1)/(z + 1) is purely imaginary, then |z| is

If w=z/[z-(1/3)i] and |w|=1, then find the locus of z

Let z ne 1 be a complex number and let omeg= x+iy, y ne 0 . If (omega- bar(omega)z)/(1-z) is purely real, then |z| is equal to

If 2z_1//3z_2 is a purely imaginary number, then find the value of "|"(z_1-z_2")"//(z_1+z_2)|dot

Given a=x//(y-z), b=y//(z-x),a n dc=z//(x-y),w h e r ex , y , za n dz are not all zero, then the value of a b+b c+c a is 0 b. 1 c. -1"" d. none of these

If a m p(z_1z_2)=0a n d|z_1|=|z_2|=1,t h e n z_1+z_2=0 b. z_1z_2=1 c. z_1=z _2 d. none of these

If |z|=1 and let omega=((1-z)^2)/(1-z^2) , then prove that the locus of omega is equivalent to |z-2|=|z+2|