Home
Class 11
MATHS
If a ,b ,c are non-zero real numbers, th...

If `a ,b ,c` are non-zero real numbers, then the minimum value of the expression `(((a^4+ 3a^2+1)(b^4+5b^2+1)(c^4+7c^2+1))/(a^2b^2c^2))` is not divisible by prime number.

Promotional Banner

Similar Questions

Explore conceptually related problems

If a,b,c are positive real numbers and 2a+b+3c=1 , then the maximum value of a^(4)b^(2)c^(2) is equal to

If a, b,c are three positive real numbers , then find minimum value of (a^(2)+1)/(b+c)+(b^(2)+1)/(c+a)+(c^(2)+1)/(a+b)

If (log)_2(a+b)+(log)_2(c+d)geq4. Then find the minimum value of the expression a+b+c+d

Let a ,b and c be real numbers such that a+2b+c=4 . Find the maximum value of (a b+b c+c a)dot

If a , b , c , are positive real numbers, then prove that (2004, 4M) {(1+a)(1+b)(1+c)}^7>7^7a^4b^4c^4

If a b^2c^3, a^2b^3c^4,a^3b^4c^5 are in A.P. (a ,b ,c >0), then the minimum value of a+b+c is (a) 1 (b) 3 (c) 5 (d) 9

If a,b and c are non- zero real number then prove that |{:(b^(2)c^(2),,bc,,b+c),(c^(2)a^(2),,ca,,c+a),(a^(2)b^(2),,ab,,a+b):}| =0

If a , b are two real numbers with altb , then a real number c can be found between a and b such that the value of (a^2+a b+b^2)/(c^2)is_____

If a ,b ,c in R^+ , then the minimum value of a(b^2+c^2)+b(c^2+a^2)+c(a^2+b^2) is equal to (a) a b c (b) 2a b c (c) 3a b c (d) 6a b c

If a , b and c are the side of a triangle, then the minimum value of (2a)/(b+c-a)+(2b)/(c+a-b)+(2c)/(a+b-c)i s (a) 3 (b) 9 (c) 6 (d) 1