Home
Class 11
MATHS
If c!=0 and the equation p//(2x)=a//(x+...

If `c!=0` and the equation `p//(2x)=a//(x+c)+b//(x-c)` has two equal roots, then `p` can be `(sqrt(a)-sqrt(b))^2` b. `(sqrt(a)+sqrt(b))^2` c. `a+b` d. `a-b`

Promotional Banner

Similar Questions

Explore conceptually related problems

If c ne 0 and p/(2x)= a/(x+c) + b/(x-c) has two equal roots, then find p.

If the equation (b^2 + c^2) x^2 -2 (a+b) cx + (c^2 + a^2) = 0 has equal roots, then

The quadratic equation (x-a)(x-b)+(x-b)(x-c)+(x-c)(x-a)=0 has equal roots if

The function f(x)=x(x+4)e^(-x//2) has its local maxima at x=adot Then (a) a=2sqrt(2) (b) a=1-sqrt(3) (c) a=-1+sqrt(3) (d) a=-4

the roots of the equation (a+sqrt(b))^(x^2-15)+(a-sqrt(b))^(x^2-15)=2a where a^2-b=1 are

If one root x^2-x-k=0 is square of the other, then k= a. 2+-sqrt(5) b. 2+-sqrt(3) c. 3+-sqrt(2) d. 5+-sqrt(2)

If tan^(-1)x+2cot^(-1)x=(2pi)/3, then x , is equal to (a) (sqrt(3)-1)/(sqrt(3)+1) (b) 3 (c) sqrt(3) (d) sqrt(2)

Show that the minimum value of (x+a)(x+b)//(x+c)dotw h e r ea > c ,b > c , is (sqrt(a-c)+sqrt(b-c))^2 for real values of x > -c

The roots of the equation a(b-2c)x^(2)+b(c-2a)x+c(a-2b)=0 are, when ab+bc+ca=0